Three-Dimensional Turbulent Flow in the Exit Head Section of a Heat Exchanger

نویسندگان

  • J. H. Nie
  • B. F. Armaly
  • W. Q. Tao
  • Q. W. Wang
چکیده

Measurements of three-dimensional turbulent flow in the exit head section of a shell-andtube heat exchanger were performed using three-component laser Doppler velocimeter. The test geometry is half of a hemispherical cap with two outlet-tubes and with a cylindrical inlet section. Distributions of the velocity vector field, the three mean velocity components, and the Reynolds stress components are reported, and the complex nature of flow in the head section and in the neighborhood of the outlet-tube is quantified. The radial and the streamwise velocity components are of the same order of magnitude in the neighboring region of the outlet-tubes, and they are not symmetric relative to the center plane intersection of the outlet-tubes. The friction factor that was measured across the exit head section of the heat exchanger decreases as the Reynolds number increases from 25,000 to 50,000. These results are useful for validating turbulent flow simulation codes and are needed for improving the design of the exit head section of shell-and-tube heat exchangers. @DOI: 10.1115/1.1637635#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow and Pressure Distributions in Short Heat Exchanger Cores with Abrupt Entrance and Exit

The typical installation of a heat exchange device usually involves a flow contraction at the core entrance and a flow expansion at the core exit. Repeated flow Contraction and expansion are experienced in the flow passages of some compact heat exchangers. The latter refers to the flow passages in the plate-fin type with louvered fins or stripped fins and in the tubular type with dimpled-circul...

متن کامل

Investigation on Turbulent Nanofluid Flow in Helical Tube in Tube Heat Exchangers

In this study, the thermal characteristics of turbulent nanofluid flow in a helical tube in the tube heat exchanger (HTTHE) were assessed numerically through computational fluid dynamics (CFD) simulation. The findings of both the turbulent models: realizable k-epsion (k-ε) and re-normalisation group (RNG) k-epsilon were compared. The temperature distribution contours show that realizable and RN...

متن کامل

Heat transfer enhancement in a spiral plate heat exchanger model using continuous rods

This study presents an innovative and simple way to increase the rate of heat transfer in a spiral plate heat exchanger model. Several circular cross-section rods, as continuous vortex generators, have been inserted within the spiral plate heat exchanger in the cross-stream plane. The vortex generators are located at various azimuth angles of α=30◦, 60◦, 90◦, and 120◦ with non-dimensional diame...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

The Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow

In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004